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Controlling spatiotemporal chaos via phase space compression
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We present a simple and effective method for controlling spatiotemporal qi$3@ via phase space
compression, by compressing the evolution orbit of the chaotic attractor. In numerical simulations, we obtain
global and local control in coupled map latti€EML) systems by the same phase space compression in
different situations, and find that the functional relationship of control results to control parameters in a certain
region is the same as the local dynamics expression of the CML. According to the control equation, using
different phase space compressions we successfully control a CML exhibiting STC into various desired stable
states.
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I. INTRODUCTION where n=1,2,... N are the discrete time steps,
=1,2,...L are the lattice siteg; is the coupling strength to
Controlling spatiotemporal chad§STC) has been given the nearest neighbor sites, periodic boundary conditions
much attention by scientists and technologists in recent years,(i +L)=Xx,(i) are imposed, and(x) governs the local
[1-19 because developments in controlling STC offer op-dynamics. We choos&(x) = ax(1—x). With L=1, model
portunities for potentially practical applications. Generally (1) reduces to the well-known logistic map; the dynamics of
speaking, there are two kinds of method for controlling STC this map might be either periodic or chaotic, depending on
feedback control and nonfeedback control, and each one h#éise nonlinear parameter. 3.5699456 .. <a<4 is the
both advantages and disadvantages. STC systems are cogiaotic regionx* =1— 1/« is an unstable steady state in the
monly described by coupled map latti€€ML) models, chaotic region.
which are relatively simple. However, only a few methods Now, we consider the logistic map with phase space com-
have been proposed for controlling such systgrhs9]. pression and take=4,
Feedback pinningi1—8] and constant pinninf®] have been
used to control or suppress chaos modeled by CMLs. Xn Xmin<Xn<Xmax
In this paper, we will give an example of controlling STC

in CMLs by phase space compression, which compresses the Xp=) Xmax:  Xn=Xmax 2
phase space orbit of the chaotic attractor. Similar methods Xmins  Xn=<Xmin»

are used to control temporal chaf0,21]; to our knowl-

edge, the method has not been used to control STC. Because Xn+1=4Xp(1—X,),

nonfeedback control does not need any prior knowledge of

the system or explicit changes of system parameters, it iwhereXmyax, Xmine€ [0,1]. Phase space compression is used to
easy to implement, and may be particularly convenient folimit x,, only before iteration so our method is different from
experimentalists. When the system is under control, the corthe methods iM20,21. We use it to control chaos in the
trolling input does not vanish and the controlled target statdogistic map and give the control parameter ranges that lead
may or may not be an unstable periodic orbit of the chaotido orbits of any desired period. To illustrate this, we consider
attractor. In numerical simulations, we first analyze the cononly x,,;,=0. We graphically analyze the iterative results of
trol results in the logistic map by using this method. Then weEq. (2) with X;,5=0.9 in Fig. Xa and X;,,,,=0.75 in Fig.
obtain global and local control in CMLs exhibiting STC by 1(b). The period-2 orbit and the unstable steady stédtere
the same phase space compression in different situations, anbitained, respectively, and period-1 orbits will always be
find the functional relationship between control results andound whenx,,,,<0.75. We now analyze the control method
control parameters in a certain region. According to the confrom another angle assuming,;=4Xmna{1—Xma) t0 be

trol equation, using different phase space compressions wgsed instead of the logistic map in the interpg},,,, 1]. Then
successfully control a CML exhibiting STC into various de- the curve of the logistic map in this region changes into the

sired stable states. dashed horizontal line shown in Figial and Fig. 1b). Since
the slope of the line is 0, orbits in this region are guaranteed
II. CONTROL METHOD AND SIMULATION RESULTS to change from unstable to stable and each orbit is equivalent

to the one atx.,4. In Fig. 1(c) we iterate the logistic map
The model we used in this paper is a one-dimensionalith «=4 for all times, exceph= 700 ton=1300. During
CML model, originally introduced by Kanek®2]: this control time, we iterate Eq2) with Xp,,=0.967 and
obtain a stable period-3 orbit. A bifurcation diagram that
L . 3 . . gives the values of successive iterates as a functioq,gfin
Xn+1(1)=(1=2)f[xn(i)]+ E{f[xn(' DI+ DI Eq.(2) is shown in Fig. 1d). So, by choosing the parameters
(1)  Xmax @ndXxmi, appropriately in Eq(2), one can stabilize any
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desired periodic orbit in the logistic map. In particular, the _ Xmaxs 1 =15
control result of period-1 obeys Ed6) below when 0 Xn(1) max= Lo
1, 1#ig,
<Xpax=<0.75.
Next, we select the motion of CMI1) that is fully de- _ o ®)

veloped turbulence at=0.80=4 [1,2,5, andL =64. After X (i) i = Xmin: 1= 1s
transient iterations, the evolution orbits of the system repre- memne o, i#ig,

sent a chaotic attractor in phase space; this chaotic attractor

is limited in a bounded phase spa¥eand its values are i=1,2,...L, XmaxXmin€ W,

distributed in the interval0,1]. To start to control STC in

system(1) at the 1+ 1)th iterative, we select a subspate  whereig is the selected control site. if=ig, X,(i) e W, the

WwcV, WDd, and compress the orbits of the lattice phase space orbit of th¢h lattice is compressed inty; if

Xn(1),i=1,2,...L, into W. Thus,x,(i) is changed to i #is, X,(i) €V, the phase space orbit of the lattice remains
unchanged.

Xn(i)’ Xn(i)min<xn(i)<xn(i)max
Xn(i)z Xn(i)maxr Xn(i)zxn(i)max (3)
Xn(i)minv xn(i)gxn(i)min

A. Global control of STC with
the same phase space compression

1. Homogeneous lattice

i=12,...L, We show the effects of the same phase space compression
on the CML(2) for a homogeneous lattigeamea and same
¢ at all siteg. The results presented in FiggaR-2(c) show
the space-time evolution of the CM(1) before and after
control withe =0.8, =4, L =64, and the initial condition of
pseudorandom numbers uniformly distributed in the interval
[0,1]. Every eighth time step is plotted after 10 000 iterations
Xn(1) max= Xmax» of transients; thus the time i¥8— 1250 from 0 to 600. At
time 200, phase space compression begins and phase\space
i) =y changes into subspa®® From now on, we will always use
Xn(l)mln Xmlr‘l! (4) .. . .
such conditions unless specified otherwise. One can see that
. the motion of the system is fully turbulent from time O to 200
1=12,... L, Xmax:Xmin€ W. and the turbulent motion of STC can be successfully sup-
pressed after the phase space compression is input. In Fig.
For local control 2(a), we fix the lower boundary o unchanged ak,,=0

where X, (i) maxe€ W, Xn(1) mine W are the boundaries of sub-
spaceW. For global control with the same phase space com
pression
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FIG. 2. Space-time diagram for CM(1) with e =0.8.0=4, L =64, and time=n/8— 1250. Phase space compression starts at time 200.
After control, (8) homogeneous steady state is obtained withx,5,=0.75 andx,,=0; (b) stable state of space period 8 is obtained with
Xmax=0.95 andx,i,=0.13; (c) inhomogeneous stable state is obtained wjth, =1 andx,;,=0.29.

and letx,,=x*=0.75; the turbulence of systeffh) is con-  Obviously, in a certain region E6) has the same form as
trolled to the homogeneous steady state very quickly  the local dynamics, and its control resmltis a function of
when time is greater than 200. In Fig(b® with X,  only the system parameterand the control parametexs, .,
=0.95 andx,,;=0.13, systentl) finally has a stable state of andxy;,; it has nothing to do with the coupling strength
space-period-8, and the transient process under control is ekquation (6) will be very useful for controlling STC in
hibited. In Fig. Zc) an inhomogeneous stable state underCMLs because the desired target statean be obtained by
control is shown withx,,,=1 (the upper boundary of un-  appropriately choosing, from it, and its values include
changed and x,,,=0.29. Certainly, by selecting different any numbers in the intervel0,1]. In this region sitesi
compression parametexs,,, andXq, to control STC in the =1L are also controlled to stable states but different fsxgm
homogeneous CML (1), one can also obtain other except forx,=x*. Only for X;5,=0.75 0rXy,,=0.25 are all
homogeneous/inhomogeneous stable states or much maitee sites of the lattice controlled to the homogeneous steady
complex patterns. In numerical simulations, we find that thestatex*.

chaotic attractor of CML(1) is sensitive to some control It is already well known that some nonlinear systems can
parameters. For instance, in FighRand Fig. Zc), one will ~ exhibit chaotic motion for some parameter values and
obtain different stable patterns if control is started at differ-periodic/pseudoperiodic motion for other parameter values in
ent times or other conditions are used. However, when Gpace and time. The control method in this paper can trans-
<Xmax=0.75 andx,;,=0, STC in CML (1) is controlled to  form the system from a turbulent state of STC into a periodic
the uniform stable stat&, (i)=x., i=2,...L—1, and state in space and time when the system orbit is limited to
the control resulk, holds independent of the lattice size or the compressed phase spaaad the system parameters are
other conditions. The curve of control resiltversusx,,cis ~ not changefl This is because the control works before the
the same as in Fig. 5 but in<0x,,,<0.75, their functional next evolution process and phase space compression compels

relationship may be written the chaotic attractor to take only the values decided by the
control when the orbit exceeds the subspace boundaries.
Xe= @Xmad 1= Xmax)  fOr Xmin="0. (6)  These definite values decide the subsequent process accord-
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FIG. 4. Space-time-amplitude plot for local control. Sitgs
=31,...,38 in the CML areselected for control with,,,=0.75
and xmin=0; other conditions are the same as in Fig. 2. Siies
=33, ...,36 arginned and controlled to the uniform steady state
xX*.
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600 from that in Fig. 2a) with X;,5,=0.75 andx,;;=0. We find
500 the heterogeneous system after control achieves a stable state
400 of space period 2 that has two close values. AsxQ,=1
300 —1/3.8 andx,;=0, space-period-2 continues to exist and
@ each control result as a function gf,,, obeys Eq.(6). In
contrast to the homogeneous lattice, all sites of a heteroge-
56 neous lattice exhibit identical dynamics and obey the same
64 0 control rule in the control parameter space although the pa-
rameters vary. Figure(B) shows that the turbulence is con-
FIG. 3. Space-time-amplitude plot before and after control introlled to an inhomogeneous stable state.
heterogeneous CMI(1) with «=3.9+0.1, £¢=0.8+0.02. Other
conditions are the same as in Fig(@. STC is controlled to a stable
state of space period 2 witky,,,=0.75 andx.,;,=0. (b) STC is
controlled to an inhomogeneous stable state with,=0.92 and We use Eqgs.(3) and (5 now, select the sitesg
Xmin=0.13. =31,...,38 in CML(21) exhibiting STC, and leave the rest
undisturbed; spatially localized control is achieved after
ing to the dynamical function, suppress the possible evolyPhase space compression is input. Figure 4 shows that the
tion orbits in the original phase space, and form the new
orbit distributions in the system. In substance, phase spaci
compression limits free contraction and expansion of the
chaotic attractor in phase space, thus changing the system'’ 1
dynamical character. Hence, by appropriately selecting dif- 08+
ferent phase space compression parameters, one can contiz ]
STC to different periodic or other states. In a word, the for-
mation of the chaotic attractor of a nonlinear system needsg
both appropriate parameter values and a large enough pha <
space; changing either of these two conditions will vary the £
system dynamics. T

B. Local control of STC

1.0+

0.6 1

esu

0.4

2. Heterogeneous lattice 1

. . ) 0.0 . T . T . T r
We change the coupling strengthand nonlinear param 00 02 0z 06 08 o

eter « at the different lattice sites. Let=0.8+(—1)' x

x0.02, a=3.9+(—1)'x0.1,i=1,2, .. .,64; the other con- mx

ditions are the same as in Fig. 2. Figure 3 shows the STC in F|G. 5. Controlled resulk, versusxma, for local control with
heterogeneous CML1) from time 0 to 200 and suppression x . =0. Sitesig=31, ...,38 in the CML areselected. The data

of STC after control with all lattice sites chosen for the samepoints represent the numerical results for the sites that can be con-
phase space compression. The result in Fig) 8 different  trolled to the uniform stable state in a spatially localized region.
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present method can be effectively used for controlling STC Ill. CONCLUSIONS

n SP"."“‘"‘”V Ioeal[zed regions of.a fully turbulent CML. The We have shown that the method presented is effective for
stabilized regioni,= 33, . . .,36, is smaller than the selected globally and locally controlling STC in CMLs via phase
region. A different stable state in the locally controlled ré-space compression. The fully developed turbulence in homo-
gion can be obtained by choosing different phase space congeneous or heterogeneous CML'’s is successfully controlled
pression Kmax andXy,n). Figure 5 shows the relationship of to homogeneous or inhomogeneous stable states by appropri-
the control resultx; to Xmax When x,i,=0; it may be de- ately selecting the same global phase space compression.
scribed by Eq(6) at 0<X;5,=0.9. Spatially localized control of STC without disturbing the rest
of the lattice can be effectively achieved by choosing appro-
priate local phase space compression. We find(&qwhose
C. Global control of STC with different form is the same as the local dynamics expression of a CML
phase space compressions and the control results include any values in the phase space
of the chaotic attractor. Using this control rule, we obtain
We use different phase space compressieatect differ- ~ various desired stable patterns by different phase space com-
Nt X (1) ma=Xmax ANd X (i) min=Xmin in different lattice re-  Pressiong5]. Numerical simulations also show that H§)
giong to control STC in CML(1) according to Eq(6). The still holds for controlhng STC in other CML models where
control results are shown in Fig. 6. In Fig. 6, phase spacehe local function is the logistic mafior example, one-way

. ; . coupled map lattice systemsThe method avoids complex
compression starts at=10100 and every time step is plot- o matical calculations in numerical simulations and may
ted. xmay takes different values in different lattice regions reqyire only a multichannel threshold detector or a multi-

whenxn=0; other conditions are the same as in Fig. 2. Wechannel amplitude limiter in experiments. Controlling STC is
obtain various desired stable patterns in the CML exhibitingg very difficult and significant task in real systems such as
STC. Certainly, by choosing differemt,,, according to Eq. hydrodynamic systems, laser systems, chemical reactions,
(6) in different lattice regions, one can obtain other interest-biological systems, and so on. We are sure the simple and
ing patterns. effective method in this paper will have very important ap-
Finally, in numerical simulations we find that the states atPlications in practice.
the edges of the control regions are different from those in
the control regions. We call this phenomenon the edge effect
of controlling STC in CMLs by phase space compression.  We thank Professor K. He for a helpful discussion.
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